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Lem1. Let X be a complex normed space. A functional
f : X → C is C-linear ⇐⇒ f (x) = u(x) + iu(−ix), where
u : X → R is R-linear. Moreover, ‖f ‖ = ‖u‖.

Proof: �=⇒� If f is C-linear, then u := Re f is R-linear and
Im f (x) = Im[i(−i)f (x)] = Im if (−ix) = Re f (−ix) = u(−ix).

Hence f (x) = u(x) + iu(−ix). Moreover,

‖u‖ = sup
‖x‖=1

|u(x)| = sup
‖x‖=1

|Re f (x)| ¬ sup
‖x‖=1

|f (x)| = ‖f ‖.

�⇐=� If u : X → R is R-linear, then f (x) := u(x) + iu(−ix)

de�nes a functional f : X → C, which is C-linear.
Let x ∈ X , ‖x‖ = 1. Take λ ∈ C such that |λ| = 1 and
λf (x) = |f (x)|. Then
|f (x)| = λf (x) = f (λx) = Re f (λx) = u(λx) ¬ ‖u‖.

That is ‖f ‖ ¬ ‖u‖. �
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Def. Let X be a linear space over R. A Banach functional is a
function p : X → R such that

(1) ∀x ,y∈X p(x + y) ¬ p(x) + p(y), (triangle inequality)

(2) ∀x∈X ∀t>0 p(tx) = tp(x). (positive homogenity)

Ex. Linear functionals, norms and semi-norms.

Thm. (Banach lemma)
X0 ⊆ X linear subspace

f0 : X0 → R linear functional

p : X → R Banach functional

∀x∈X0 f0(x) ¬ p(x)

 =⇒


there exists a linear

functional f : X → R
such that f |X0 = f0
∀x∈X f (x) ¬ p(x)


Proof: We prove it in two steps:

1) We apply Kuratowski-Zorn lemma, to obtain a maximal
extension f of f0, which is majorized by p.

2) We show that this maximal extension is de�ned on whole X .
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1) Let Φ be the set of all linear extensions dominated by p, i.e.

Φ :=
{

(ϕ,Xϕ) : Xϕ linear subspace containing X0,

ϕ : Xϕ → R linear functional

such that ϕ|X0
= f0 and ϕ ¬ p|Xϕ

}
.

We introduce the partial order relation on Φ as follows:

(ϕ1,Xϕ1) ≺ (ϕ2,Xϕ2)
def⇐⇒ Xϕ1 ⊆ Xϕ2 oraz ϕ2|Xϕ1 = ϕ1.

Every linearly ordered set{(ϕi ,Xi)}i∈I has an upper bound
(ϕ,Xϕ), where Xϕ :=

⋃
i∈I Xϕi

and ϕ(x) := ϕi(x) if x ∈ Xϕi
.

Therefore, by the Kuratowski�Zorn Lemma, there exists a
maximal element (ϕm,Xϕm) in Φ.

2) If Xϕm = X , then by setting f = ϕm we �nish the proof. Let us
assume indirectly that there exists x0 ∈ X \ Xϕm and let us put

X̃ := lin{Xϕm , x0} = {y + λx0 : x ∈ Xϕm , λ ∈ R}.
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For any u ∈ R the formula

ϕu(x + λx0) := ϕm(x) + λu, x ∈ Xϕm , λ ∈ R,

de�nes a linear functional ϕu : X̃ → R, which extends ϕm.
Question: Can we pick u ∈ R so that p dominates ϕ1?

∀
x̃∈X̃

ϕu(x̃) ¬ p(x̃) ⇐⇒ ∀
x∈Xϕm , λ∈R

ϕm(x) + λu ¬ p(x + λx0)

⇐⇒ ∀
x∈Xϕm , λ>0

{
u ¬ 1

λ
(p(x + λx0)− ϕm(x))

u ­ − 1
λ

(p(x − λx0)− ϕm(x))

homogen. p⇐⇒ ∀
x∈Xϕm , λ>0

{
u ¬ p

(
x
λ

+ x0
)
− ϕm

(
x
λ

)
u ­ −p

(
x
λ
− x0

)
+ ϕm

(
x
λ

)
⇐⇒

{
u ¬ b := inf{p(x + x0)− ϕm(x) : x ∈ Xϕm}
u ­ a := sup{−p(x − x0) + ϕm(x) : x ∈ Xϕm}.

If a ¬ b, then for any u ∈ [a, b] we get (ϕu, X̃ ) ∈ Φ, which is an
extension of maximal element (ϕm,Xm) ∈ ΦE 5 / 11



For any x1, x2 ∈ Xϕm we have

p(x1 + x0)− ϕm(x1)−
(
− p(x2 − x0) + ϕm(x2)

)
= p(x1 + x0) + p(x2 − x0)− ϕm(x1 + x2) (triangle ineq. for p)

­ p(x1 + x2)− ϕm(x1 + x2) ­ 0 (because ϕm ¬ p).

Whence b ­ a. �

Hahn-Banach Theorem

Let X be a normed space over F = R,C. Every bounded linear
functional f0 : X0 → F de�ned on a subspace X0 ⊆ X extends
to a bounded linear functional f : X → F such that ‖f ‖ = ‖f0‖.

Linear functionals extend in

a norm preserving way !

Proof: (1) Assume that F = R. Then p(x) := ‖x‖ · ‖f0‖, x ∈ X
is a Banach functional such that f0 ¬ p on X0. Therefore,
by the Banach Lemma, there exists a linear functional
f : X → R such that f |X0

= f0 and f ¬ p on X . Hence

‖f ‖ = sup
‖x‖=1

|f (x)| ¬ sup
‖x‖=1

p(x) = sup
‖x‖=1

‖x‖ · ‖f0‖ = ‖f0‖.
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Hence f is bounded and ‖f ‖ ¬ ‖f0‖. For the reverse inequality:

‖f0‖ = sup
‖x‖=1
x∈X0

|f0(x)| = sup
‖x‖=1
x∈X0

|f (x)| ¬ sup
‖x‖=1
x∈X

|f (x)| = ‖f ‖.

(2) Assume that F = C. By Lem1 f0(x) = u0(x) + iu0(−ix),
where u0 : X0 → R is R-linear and ‖u0‖ = ‖f0‖. From step (1) we
know that u0 extends to an R-linear u : X → R such that
‖u‖ = ‖u0‖ = ‖f0‖. Hence again by Lem1 we get that

f (x) := u(x) + iu(−ix), x ∈ X ,

de�nes a C-linear extension of f0 and ‖f ‖ = ‖u‖ = ‖f0‖. �

Cor1. For each x ∈ X \ {0} there is a functional f ∈ X ∗ such that

‖f ‖ = 1 oraz f (x) = ‖x‖.

In particular, bounded functionals seperate points in X , that is

∀x ,y∈X x 6= y =⇒ ∃f ∈X∗ f (x) 6= f (y).
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Proof: Let x ∈ X \ {0}. Put X0 := lin{x} and de�ne f0 : X0 → F
by f0(λx) := λ‖x‖, λ ∈ F. Then f0 ∈ X ∗0 and ‖f0‖ = 1
So f0 extends to the desired functional f by Hahn�Banach Thm.

In particular, if x 6= y , then x − y 6= 0, and so there is f ∈ X ∗

such that f (x − y) = ‖x − y‖ 6= 0, whence f (x) 6= f (y). �

Cor2. Every normed space X embeds into its double dual space

X ∗∗ := (X ∗)∗.

Namely, we have a linear isometry i : X → X ∗∗ given by

i(x)(f ) := f (x) x ∈ X , f ∈ X ∗.

Proof: Let x ∈ X . The functional i(x) : X ∗ → F is linear:

i(x)(λf1 + f2) = (λf1 + f2)(x) = λf1(x) + f2(x) = λi(x)f1 + i(x)f2

and ‖i(x)‖X∗∗ = sup‖f ‖X∗=1 |i(x)(f )| = sup‖f ‖X∗=1 |f (x)| ¬ ‖x‖X .
Hence i(x) ∈ X ∗∗ and ‖i(x)‖X∗∗ ¬ ‖x‖X .
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To prove the opposite inequality, we may assume that x 6= 0.
Then by Cor1 there is f ∈ X ∗ such that ‖f ‖X∗ = 1 and
f (x) = ‖x‖X . Hence ‖i(x)‖X∗∗ = ‖x‖X . Thus the map

X 3 x → i(x) ∈ X ∗∗

is a well de�ned isometry. This isometry is linear beacuse

i(λx1 + x2)(f ) = f (λx1 + x2) = λf (x1) + f (x2)

= λi(x1)(f ) + i(x2)(f ) =
(
λi(x1) + i(x2)

)
(f ). �

Def. X is a re�exive space if i : X → X ∗∗ is an isomorphism,
that is if every bounded functional on X ∗ is of the form
X ∗ 3 f 7→ f (x) ∈ F for some x ∈ X .

Examples

Re�exive Non-re�exive
�nite dimensional spaces, c0, C [a, b], `1, `∞,
Hilbert spaces, L1([a, b]), L∞([a, b])
Lp-spaces for 1 < p <∞
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Thm. (Duals to Lp-spaces)

For any 1 ¬ p <∞ and measure space (Ω,Σ, µ) (σ-�nite when

p = 1) we have a natural isometric isomorphism

Lp(µ)∗ ∼= Lq(µ), where
1

p
+

1

q
= 1.

More precisely, for any f ∈ Lp(µ)∗ there is y ∈ Lq(µ) such that

f (x) =
∫

Ω
x · y dµ, x ∈ Lp(µ).

Moreover, then ‖f ‖ = ‖y‖q =
{(∫

Ω
|y|q dµ

) 1
q , p > 1,

ess sup|y|, p = 1.

Cor1. (`p)∗ ∼= `q for 1 ¬ p <∞ and 1
p

+ 1
q

= 1. Namely

f ∈ (`p)∗ ⇐⇒ ∃!y∈`q ∀x∈`p f (x) =
∞∑
k=1

x(k)y(k)

and then ‖f ‖ = ‖y‖q.
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Cor2. The spaces Lp(µ), `p for 1 < p <∞ are re�exive.

Proof: Since p > 1, there is �nite q > 1 such that 1
p

+ 1
q

= 1

(q = 1
p−1). Applying Thm twice

Lp(µ)∗∗ = (Lp(µ)∗)∗ ∼= Lq(µ)∗ ∼= Lp(µ). �

Lem. c∗0
∼= `1. Namely f ∈ c∗0 ⇐⇒ there is y ∈ `1 such that

f (x) =
∞∑
k=1

x(k)y(k), for x ∈ c0, and ‖f ‖ = ‖y‖1 =
∞∑
k=1

|y(k)|.

Proof:

Cor. c0 is not refelexive.

Proof: We have c∗∗0 = (c∗0 )∗ ∼= (`1)∗ ∼= `∞, but c0 6∼= `∞, because
for instance c0 is separable, while `∞ is not. �
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