Functional Analysis

Bartosz Kwaśniewski

Faculty of Mathematics, University of Białystok

Lecture 11 Hahn-Banach theorem

math.uwb.edu.pl/~zaf/kwasniewski/teaching

Lem1. Let X be a complex normed space. A functional $f: X \to \mathbb{C}$ is \mathbb{C} -linear $\iff f(x) = u(x) + iu(-ix)$, where $u: X \to \mathbb{R}$ is \mathbb{R} -linear. Moreover, ||f|| = ||u||.

Proof: " \Longrightarrow " If f is \mathbb{C} -linear, then $u := \operatorname{Re} f$ is \mathbb{R} -linear and $\lim f(x) = \lim [i(-i)f(x)] = \lim if(-ix) = \operatorname{Re} f(-ix) = u(-ix).$ Hence f(x) = u(x) + iu(-ix). Moreover, $||u|| = \sup |u(x)| = \sup |\operatorname{Re} f(x)| \leq \sup |f(x)| = ||f||.$ ||x|| = 1 ||x|| = 1||x|| = 1" \Leftarrow " If $u: X \to \mathbb{R}$ is \mathbb{R} -linear, then f(x) := u(x) + iu(-ix)defines a functional $f : X \to \mathbb{C}$, which is \mathbb{C} -linear. Let $x \in X$, ||x|| = 1. Take $\lambda \in \mathbb{C}$ such that $|\lambda| = 1$ and $\lambda f(x) = |f(x)|$. Then $|f(x)| = \lambda f(x) = f(\lambda x) = \operatorname{Re} f(\lambda x) = u(\lambda x) \leq ||u||.$ That is $||f|| \leq ||u||$.

Def. Let X be a linear space over \mathbb{R} . A **Banach functional** is a function $p: X \to \mathbb{R}$ such that

•
$$\forall_{x,y\in X} \ p(x+y) \leq p(x) + p(y),$$
 (triangle inequality)

Ex. Linear functionals, norms and semi-norms.

$\begin{array}{l} \text{Thm. (Banach lemma)} \\ \begin{pmatrix} X_0 \subseteq X \text{ linear subspace} \\ f_0 : X_0 \to \mathbb{R} \text{ linear functional} \\ p : X \to \mathbb{R} \text{ Banach functional} \\ \forall_{x \in X_0} f_0(x) \leqslant p(x) \end{array} \end{pmatrix} \Longrightarrow \begin{pmatrix} \text{there exists a linear} \\ \text{functional } f : X \to \mathbb{R} \\ \text{such that } f|_{X_0} = f_0 \\ \forall_{x \in X} f(x) \leqslant p(x) \end{pmatrix}$

Proof: We prove it in two steps:

- 1) We apply Kuratowski-Zorn lemma, to obtain a maximal extension f of f_0 , which is majorized by p.
- 2) We show that this maximal extension is defined on whole X.

1) Let Φ be the set of all linear extensions dominated by p, i.e.

$$egin{aligned} \Phi &:= ig\{(arphi, X_arphi): X_arphi \ ext{linear subspace containing } X_0, \ arphi: X_arphi o \mathbb{R} \ ext{linear functional} \ ext{such that } arphi|_{X_0} &= f_0 \ ext{and } arphi \leqslant p|_{X_arphi}ig\}. \end{aligned}$$

We introduce the partial order relation on Φ as follows:

$$(\varphi_1, X_{\varphi_1}) \prec (\varphi_2, X_{\varphi_2}) \iff X_{\varphi_1} \subseteq X_{\varphi_2} \text{ oraz } \varphi_2|_{X_{\varphi_1}} = \varphi_1.$$

Every linearly ordered set $\{(\varphi_i, X_i)\}_{i \in I}$ has an upper bound (φ, X_{φ}) , where $X_{\varphi} := \bigcup_{i \in I} X_{\varphi_i}$ and $\varphi(x) := \varphi_i(x)$ if $x \in X_{\varphi_i}$. Therefore, by the Kuratowski–Zorn Lemma, there exists a maximal element $(\varphi_m, X_{\varphi_m})$ in Φ .

2) If $X_{\varphi_m} = X$, then by setting $f = \varphi_m$ we finish the proof. Let us assume indirectly that there exists $x_0 \in X \setminus X_{\varphi_m}$ and let us put

$$\widetilde{X}:= \mathrm{lin}\{X_{\varphi_m}, x_0\} = \{y + \lambda x_0 : x \in X_{\varphi_m}, \ \lambda \in \mathbb{R}\}.$$

For any $u \in \mathbb{R}$ the formula

$$\varphi_u(x + \lambda x_0) := \varphi_m(x) + \lambda u, \qquad x \in X_{\varphi_m}, \ \lambda \in \mathbb{R}$$

defines a linear functional $\varphi_u : \widetilde{X} \to \mathbb{R}$, which extends φ_m . **Question**: Can we pick $u \in \mathbb{R}$ so that p dominates φ_1 ?

If $a \leq b$, then for any $u \in [a, b]$ we get $(\varphi_u, \widetilde{X}) \in \Phi$, which is an extension of maximal element $(\varphi_m, X_m) \in \Phi$

For any $x_1, x_2 \in X_{\omega_m}$ we have $p(x_1 + x_0) - \varphi_m(x_1) - (-p(x_2 - x_0) + \varphi_m(x_2))$ $= p(x_1 + x_0) + p(x_2 - x_0) - \varphi_m(x_1 + x_2) \quad \text{(triangle ineq. for } p)$ $\geq p(x_1+x_2)-\varphi_m(x_1+x_2) \geq 0$ (because $\varphi_m \leqslant p$). Whence $b \ge a$. Linear functionals extend in Hahn-Banach Theorem a norm preserving way ! Let X be a normed space over $\mathbb{F} = \mathbb{R}, \mathbb{C}$. Every bounded linear functional $f_0: X_0 \to \mathbb{F}$ defined on a subspace $X_0 \subset X$ extends to a bounded linear functional $f : X \to \mathbb{F}$ such that $||f|| = ||f_0||$. **Proof**: (1) Assume that $\mathbb{F} = \mathbb{R}$. Then $p(x) := ||x|| \cdot ||f_0||, x \in X_{O}$ is a Banach functional such that $f_0 \leq p$ on X_0 . Therefore,

by the Banach Lemma, there exists a linear functional $f: X \to \mathbb{R}$ such that $f|_{X_0} = f_0$ and $f \leq p$ on X. Hence

 $\|f\| = \sup_{\|x\|=1} |f(x)| \leq \sup_{\|x\|=1} p(x) = \sup_{\|x\|=1} \|x\| \cdot \|f_0\| = \|f_0\|.$

Hence f is bounded and $||f|| \leq ||f_0||$. For the reverse inequality:

$$||f_0|| = \sup_{\|x\|=1 \ x \in X_0} |f_0(x)| = \sup_{\|x\|=1 \ x \in X_0} |f(x)| \le \sup_{\|x\|=1 \ x \in X} |f(x)| = ||f||.$$

(2) Assume that $\mathbb{F} = \mathbb{C}$. By Lem1 $f_0(x) = u_0(x) + iu_0(-ix)$, where $u_0 : X_0 \to \mathbb{R}$ is \mathbb{R} -linear and $||u_0|| = ||f_0||$. From step (1) we know that u_0 extends to an \mathbb{R} -linear $u : X \to \mathbb{R}$ such that $||u|| = ||u_0|| = ||f_0||$. Hence again by Lem1 we get that

$$f(x) := u(x) + iu(-ix), \qquad x \in X,$$

defines a \mathbb{C} -linear extension of f_0 and $||f|| = ||u|| = ||f_0||$.

Cor1. For each $x \in X \setminus \{0\}$ there is a functional $f \in X^*$ such that

$$||f|| = 1$$
 oraz $f(x) = ||x||$.

In particular, bounded functionals separate points in X, that is

$$\forall_{x,y\in X} \quad x \neq y \implies \exists_{f\in X^*} \quad f(x) \neq f(y).$$

Proof: Let $x \in X \setminus \{0\}$. Put $X_0 := \lim\{x\}$ and define $f_0 : X_0 \to \mathbb{F}$ by $f_0(\lambda x) := \lambda ||x||, \lambda \in \mathbb{F}$. Then $f_0 \in X_0^*$ and $||f_0|| = 1$ So f_0 extends to the desired functional f by Hahn–Banach Thm.

In particular, if $x \neq y$, then $x - y \neq 0$, and so there is $f \in X^*$ such that $f(x - y) = ||x - y|| \neq 0$, whence $f(x) \neq f(y)$.

Cor2. Every normed space X embeds into its double dual space

$$X^{**} := (X^*)^*.$$

Namely, we have a linear isometry $i: X \to X^{**}$ given by

$$i(x)(f) := f(x)$$
 $x \in X, f \in X^*$.

Proof: Let $x \in X$. The functional $i(x) : X^* \to \mathbb{F}$ is linear: $i(x)(\lambda f_1 + f_2) = (\lambda f_1 + f_2)(x) = \lambda f_1(x) + f_2(x) = \lambda i(x)f_1 + i(x)f_2$ and $||i(x)||_{X^{**}} = \sup_{\|f\|_{X^*}=1} |i(x)(f)| = \sup_{\|f\|_{X^*}=1} |f(x)| \leq \|x\|_X$. Hence $i(x) \in X^{**}$ and $||i(x)||_{X^{**}} \leq \|x\|_X$. To prove the opposite inequality, we may assume that $x \neq 0$. Then by **Cor1** there is $f \in X^*$ such that $||f||_{X^*} = 1$ and $f(x) = ||x||_X$. Hence $||i(x)||_{X^{**}} = ||x||_X$. Thus the map $X \ni x \to i(x) \in X^{**}$

is a well defined isometry. This isometry is linear beacuse

$$i(\lambda x_1 + x_2)(f) = f(\lambda x_1 + x_2) = \lambda f(x_1) + f(x_2)$$

= $\lambda i(x_1)(f) + i(x_2)(f) = (\lambda i(x_1) + i(x_2))(f).$

Def. X is a **reflexive space** if $i : X \to X^{**}$ is an isomorphism, that is if every bounded functional on X^* is of the form $X^* \ni f \mapsto f(x) \in \mathbb{F}$ for some $x \in X$.

Examples			
	Reflexive	Non-reflexive	
	finite dimensional spaces,	c_0 , $C[a,b]$, ℓ^1 , ℓ^∞ ,	
	Hilbert spaces,	$L^1([a, b]), \ L^\infty([a, b])$	
	L ^p -spaces for 1		

Thm. (Duals to L^p -spaces)

For any $1 \leq p < \infty$ and measure space (Ω, Σ, μ) (σ -finite when p = 1) we have a natural isometric isomorphism

$$L^p(\mu)^*\cong L^q(\mu), \qquad ext{where} \quad rac{1}{p}+rac{1}{q}=1.$$

More precisely, for any $f \in L^p(\mu)^*$ there is $y \in L^q(\mu)$ such that

$$f(x) = \int_{\Omega} x \cdot y \, d\mu, \qquad x \in L^p(\mu).$$

Moreover, then $||f|| = ||y||_q = \begin{cases} (\int_{\Omega} |y|^q d\mu)^{\frac{1}{q}}, & p > 1, \\ ess sup|y|, & p = 1. \end{cases}$

Cor1.
$$(\ell^p)^* \cong \ell^q$$
 for $1 \le p < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Namely
 $f \in (\ell^p)^* \iff \exists !_{y \in \ell^q} \forall_{x \in \ell^p} f(x) = \sum_{k=1}^{\infty} x(k)y(k)$
and then $\|f\| = \|y\|_q$.

Cor2. The spaces $L^{p}(\mu)$, ℓ^{p} for 1 are reflexive.

Proof: Since p > 1, there is finite q > 1 such that $\frac{1}{p} + \frac{1}{q} = 1$ $(q = \frac{1}{p-1})$. Applying Thm twice

$$L^{p}(\mu)^{**} = (L^{p}(\mu)^{*})^{*} \cong L^{q}(\mu)^{*} \cong L^{p}(\mu).$$

Lem. $c_0^* \cong \ell^1$. Namely $f \in c_0^* \iff$ there is $y \in \ell^1$ such that $f(x) = \sum_{k=1}^{\infty} x(k)y(k)$, for $x \in c_0$, and $||f|| = ||y||_1 = \sum_{k=1}^{\infty} |y(k)|$.

Cor. c_0 is not refelexive.

Proof: We have $c_0^{**} = (c_0^*)^* \cong (\ell^1)^* \cong \ell^\infty$, but $c_0 \not\cong \ell^\infty$, because for instance c_0 is separable, while ℓ^∞ is not.